login
A104120
a(n) = (prime(n + 1) - prime(n))/2 (mod 2).
10
1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1
OFFSET
2,1
COMMENTS
Questions: Is s(n) = (1/n)*Sum_{i=2..n+1} a(i) > 1/2 for all n? Does s(n) --> 1/2?
EXAMPLE
a(1) = (prime(2 + 1) - prime(2))/2 (mod 2) = (5 - 3)/2 (mod 2) = 1 mod 2 = 1.
MATHEMATICA
Table[Mod[(Prime[i + 1] - Prime[i])/2, 2], {i, 2, 100}]
Mod[(#[[2]]-#[[1]])/2, 2]&/@Partition[Prime[Range[2, 110]], 2, 1] (* Harvey P. Dale, Oct 01 2018 *)
CROSSREFS
Sequences related to the differences between successive primes: A001223 (Delta(p)), A028334, A080378, A104120, A330556-A330561.
Sequence in context: A359824 A087429 A093075 * A254634 A108336 A279733
KEYWORD
nonn,easy
AUTHOR
Joseph L. Pe, Mar 06 2005
STATUS
approved