login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104123
Decimal expansion of the constant c = sqrt((137 - 1/(57+sqrt(Pi)/10))/(2*Pi)), an approximation to the Feigenbaum bifurcation velocity constant delta (A006890).
1
4, 6, 6, 9, 2, 0, 1, 6, 0, 9, 1, 8, 3, 4, 9, 2, 4, 5, 1, 4, 5, 0, 6, 6, 1, 8, 9, 4, 0, 5, 2, 3, 3, 0, 6, 1, 9, 5, 1, 6, 9, 6, 6, 1, 0, 5, 5, 5, 8, 6, 9, 4, 3, 6, 6, 2, 9, 7, 8, 2, 7, 2, 5, 3, 9, 7, 8, 4, 4, 7, 0, 7, 2, 7, 7, 6, 2, 6, 6, 7, 4, 8, 0, 6, 6, 9, 9, 8, 4, 8, 0, 4, 1, 8, 4, 4, 3, 2, 0, 1, 4, 8, 7, 4, 0
OFFSET
1,1
COMMENTS
c - delta = 0.000000000080501779597..., Gamma(delta) - InverseGamma(1/(c-delta)) = 0.50050037514..., log(log(1/(c-d))) - Pi = 0.00440025013324...
LINKS
EXAMPLE
4.669201609183492451450661894052330619516966105558694366297827...
MATHEMATICA
RealDigits[Sqrt[(137 - 1/(57 + Sqrt[Pi]/10))/(2 Pi)], 10, 110][[1]]
PROG
(PARI) sqrt((137 - 1/(57 + sqrt(Pi)/10))/(2*Pi)) \\ G. C. Greubel, Jan 13 2017
CROSSREFS
Cf. A006890.
Sequence in context: A049089 A028327 A006890 * A094078 A016122 A247677
KEYWORD
cons,nonn
AUTHOR
Gerald McGarvey, Mar 06 2005
STATUS
approved