login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103842
Triangle read by rows: row n is binary expansion of 2^n-n, n >= 1.
1
1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
This sequence can also be obtained by reading (from bottom to top, column by column) the array given in A103582 after suppressing the terms below the main diagonal.
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
EXAMPLE
Table begins:
1
1 0
1 0 1
1 1 0 0
1 1 0 1 1
1 1 1 0 1 0
1 1 1 1 0 0 1
MAPLE
p:=proc(n) local A, j, b: A:=convert(2^n-n, base, 2): for j from 1 to nops(A) do b:=j->A[nops(A)+1-j] od: seq(b(j), j=1..nops(A)): end: for n from 1 to 15 do p(n) od; # yields sequence in triangular form # Emeric Deutsch, Apr 16 2005
MATHEMATICA
Table[IntegerDigits[2^n-n, 2], {n, 20}]//Flatten (* Harvey P. Dale, Feb 06 2022 *)
PROG
(PARI) tabl(nn) = for (n=1, nn, print(binary(2^n-n))); \\ Michel Marcus, Mar 01 2015
CROSSREFS
Sequence in context: A248396 A285952 A371691 * A286064 A065535 A285518
KEYWORD
nonn,tabl,easy
AUTHOR
Philippe Deléham, Mar 31 2005
EXTENSIONS
More terms from Emeric Deutsch, Apr 16 2005
STATUS
approved