login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103839
Number of permutations of (1,2,3,...,n) where each of the (n-1) adjacent pairs of elements sums to a prime.
7
1, 2, 2, 8, 4, 16, 24, 60, 140, 1328, 2144, 17536, 23296, 74216, 191544, 2119632, 4094976, 24223424, 45604056, 241559918, 675603568, 8723487720, 22850057800, 285146572432, 859834538938, 8276479696196, 32343039694056, 429691823372130
OFFSET
1,2
COMMENTS
The number of Hamiltonian paths in a graph of which the nodes represent the numbers (1,2,3,...,n) and the edges connect each pair of nodes that add up to a prime. - Bob Andriesse, Oct 04 2020
While A076220(n) > a(n) for 2<n<26, for even n in this range A076220(n) / a(n) < A076220(n-1) / a(n-1). - Bob Andriesse, Dec 05 2023
FORMULA
For n>1, a(n) = 2 * A051239(n).
EXAMPLE
For n = 5, we have the 4 permutations and the sums of adjacent elements:
1,4,3,2,5 (1+4=5, 4+3=7, 3+2=5, 2+5=7)
3,4,1,2,5 (3+4=7, 4+1=5, 1+2=3, 2+5=7)
5,2,1,4,3 (5+2=7, 2+1=3, 1+4=5, 4+3=7)
5,2,3,4,1 (5+2=7, 2+3=5, 3+4=7, 4+1=5)
MATHEMATICA
A103839[n_] := Count[Map[lpf, Permutations[Range[n]]], 0]
lpf[x_] := Length[Select[asf[x], ! PrimeQ[#] &]];
asf[x_] := Module[{i}, Table[x[[i]] + x[[i + 1]], {i, Length[x] - 1}]];
Table[A103839[n], {n, 1, 9}] (* Robert Price, Oct 25 2018 *)
PROG
(PARI) okperm(perm) = {for (k=1, #perm -1, if (! isprime(perm[k]+perm[k+1]), return (0)); ); return (1); }
a(n) = {nbok = 0; for (j=1, n!, perm = numtoperm(n, j); if (okperm(perm), nbok++); ); return (nbok); } \\ Michel Marcus, Apr 08 2013
CROSSREFS
Sequence in context: A143625 A003612 A337944 * A135727 A320423 A274449
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 30 2005
EXTENSIONS
More terms from Max Alekseyev, Jan 04 2008
a(25)-a(28) from Giovanni Resta, Apr 01 2014
STATUS
approved