login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: row n is binary expansion of 2^n-n, n >= 1.
1

%I #15 Feb 06 2022 14:49:54

%S 1,1,0,1,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,1,0,0,1,1,1,1,1,1,0,

%T 0,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0,1,0,1,1,1,

%U 1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0

%N Triangle read by rows: row n is binary expansion of 2^n-n, n >= 1.

%C This sequence can also be obtained by reading (from bottom to top, column by column) the array given in A103582 after suppressing the terms below the main diagonal.

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.

%e Table begins:

%e 1

%e 1 0

%e 1 0 1

%e 1 1 0 0

%e 1 1 0 1 1

%e 1 1 1 0 1 0

%e 1 1 1 1 0 0 1

%p p:=proc(n) local A,j,b: A:=convert(2^n-n,base,2): for j from 1 to nops(A) do b:=j->A[nops(A)+1-j] od: seq(b(j),j=1..nops(A)): end: for n from 1 to 15 do p(n) od; # yields sequence in triangular form # _Emeric Deutsch_, Apr 16 2005

%t Table[IntegerDigits[2^n-n,2],{n,20}]//Flatten (* _Harvey P. Dale_, Feb 06 2022 *)

%o (PARI) tabl(nn) = for (n=1, nn, print(binary(2^n-n))); \\ _Michel Marcus_, Mar 01 2015

%Y Cf. A000325, A103582.

%K nonn,tabl,easy

%O 1,1

%A _Philippe Deléham_, Mar 31 2005

%E More terms from _Emeric Deutsch_, Apr 16 2005