login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103668
Number of semiprimes between prime(n) and prime(n+1).
6
0, 1, 1, 2, 0, 2, 0, 2, 2, 0, 3, 2, 0, 1, 2, 3, 0, 2, 1, 0, 2, 1, 3, 4, 0, 0, 1, 0, 1, 6, 1, 2, 0, 5, 0, 1, 3, 1, 1, 2, 0, 3, 0, 1, 0, 6, 7, 1, 0, 0, 2, 0, 2, 2, 2, 2, 0, 1, 1, 0, 3, 7, 1, 0, 1, 6, 2, 3, 0, 0, 2, 3, 1, 1, 2, 1, 4, 1, 2, 4, 0, 2, 0, 1, 0, 3, 3, 1, 0, 1, 4, 3, 1, 2, 2, 1, 5, 0, 7, 3, 3, 2, 2, 0, 1
OFFSET
1,4
EXAMPLE
a(4)=2 because between prime(4)=7 and prime(5)=11 there are two semiprimes: 3*3 and 2*5.
a(11)=3 because between p(11)=31 and p(12)=37 there are three semiprimes: 33=3*11, 34=2*17 and 35=5*7.
MATHEMATICA
fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; f[n_] := Count[fQ /@ Range[Prime[n] + 1, Prime[n + 1] - 1], True]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, May 07 2005 *)
Table[Count[Range[Prime[n], Prime[n+1]], _?(PrimeOmega[#]==2&)], {n, 110}] (* Harvey P. Dale, Sep 29 2019 *)
CROSSREFS
The first occurrence of k = 0, 1, 2, ... is at position 1, 2, 4, 11, 24, 34, 30, 47, ... (A103669).
Primes: A000040, semiprimes: A001358, number of primes between two successive semiprimes: A088700.
Sequence in context: A116127 A039979 A204173 * A276812 A246721 A249441
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Feb 12 2005
STATUS
approved