login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103640 Expansion of theta_4(q)^4 - theta_2(q)^4, where theta_2 and theta_4 are the Jacobi theta series. 2
1, -24, 24, -96, 24, -144, 96, -192, 24, -312, 144, -288, 96, -336, 192, -576, 24, -432, 312, -480, 144, -768, 288, -576, 96, -744, 336, -960, 192, -720, 576, -768, 24, -1152, 432, -1152, 312, -912, 480, -1344, 144, -1008, 768, -1056, 288, -1872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

C. Pache, Shells of selfdual lattices viewed as spherical designs

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Eisenstein Series

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

G.f.: theta_4(q)^4 - theta_2(q)^4. - Michael Somos, May 29 2005

a(n) = (-1)^n * A004011(n). - Michael Somos, Jun 01 2012

Expansion of phi(-q)^4 - 16*q*psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 21 2014

EXAMPLE

G.f. = 1 - 24*q + 24*q^2 - 96*q^3 + 24*q^4 - 144*q^5 + 96*q^6 - 192*q^7 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^4 - EllipticTheta[ 2, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 01 2012 *)

a[ n_] := With[{m = InverseEllipticNomeQ @x}, SeriesCoefficient[(1 - 2 m) (EllipticK[m] / (Pi/2))^2, {x, 0, n}]]; (* Michael Somos, Aug 21 2014 *)

a[ n_] := If[ n < 1, Boole[n == 0], -24 Sum[ (-1)^(n + d) n / d, { d, Divisors[ n]}]]; (* Michael Somos, Aug 21 2014 *)

a[ n_] := If[ n < 1, Boole[n == 0], -24 DivisorSum[ n, (-1)^(n + #) n / # &]]; (* Michael Somos, Aug 21 2014 *)

PROG

(PARI) {a(n) = if( n<1, n==0, (-1)^n * 24 * sumdiv(n, d, d%2*d))}; /* Michael Somos, May 29 2005 */

(MAGMA) A := Basis( ModularForms( Gamma0(4), 2), 46); A[1] - 24*A[2]; /* Michael Somos, Aug 21 2014 */

CROSSREFS

Cf. A004011.

Sequence in context: A040553 A022358 A122505 * A004011 A056465 A056455

Adjacent sequences:  A103637 A103638 A103639 * A103641 A103642 A103643

KEYWORD

sign,look

AUTHOR

Ralf Stephan, Feb 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 23:41 EST 2020. Contains 332113 sequences. (Running on oeis4.)