|
|
A103065
|
|
Numbers n such that 7*10^n + 6*R_n + 3 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
|
|
1
|
|
|
1, 2, 3, 6, 8, 18, 19, 21, 32, 48, 65, 72, 99, 120, 201, 308, 717, 968, 1344, 2132, 3567, 3968, 8327, 10598, 12465, 15875, 18895, 28611, 29418, 83693
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also numbers n such that (23*10^n+7)/3 is prime.
a(31) > 10^5. - Robert Price, Oct 08 2015
|
|
LINKS
|
Table of n, a(n) for n=1..30.
Makoto Kamada, Prime numbers of the form 766...669.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A101150(n) + 1.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[(23*10^n + 7)/3], Print[n]], {n, 0, 10000}]
|
|
PROG
|
(PARI) for(n=1, 10^5, if(isprime((23*10^n+7)/3), print1(n", "))) \\ Altug Alkan, Oct 08 2015
|
|
CROSSREFS
|
Cf. A002275, A101150.
Sequence in context: A327018 A329128 A330442 * A281142 A110448 A005508
Adjacent sequences: A103062 A103063 A103064 * A103066 A103067 A103068
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jan 19 2005
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(28)-a(29) from Kamada data by Robert Price, Dec 14 2010
a(30) from Robert Price, Oct 08 2015
|
|
STATUS
|
approved
|
|
|
|