

A102584


a(n) = 1/2 times the cancellation factor in reducing Sum_{k=0 to 2n+1} 1/k! to lowest terms.


0



1, 1, 10, 5, 4, 1, 2, 65, 2000, 1, 26, 247, 20, 5, 2, 19, 8, 115, 10, 23, 52, 31, 10, 65, 416, 37, 2, 25, 20, 1, 38, 1, 40, 325, 1406, 37, 676, 65, 10, 63829, 368, 1, 230, 5, 4, 1, 26, 5, 40, 247, 26, 43, 3100, 9785, 2, 1, 256, 5, 2050, 13, 388, 1, 4810, 1495, 8, 23, 254, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The denominator of Sum_{k=0 to m} 1/k! is m!/d, where d = A093101(m). If m = 2n+1 > 1, then d is even and a(n) = d/2.


LINKS

Table of n, a(n) for n=1..68.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637641.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 20072010.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 20072009; Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
Index entries for sequences related to factorial numbers.


FORMULA

a(n) = gcd(m!, 1+m+m(m1)+m(m1)(m2)+...+m!)/2, where m = 2n+1.


EXAMPLE

1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! = 13700/5040 = (20*685)/(20*252) and 7 = 2*3+1, so a(3) = 20/2 = 10.


PROG

(PARI) a(n) = {my(m = (2*n+1), s = 1, prt = m); for (k=1, m, s += prt; prt *= (mk); ); gcd(m!, s)/2; } \\ Michel Marcus, Sep 29 2017


CROSSREFS

a(n) = A093101(2n+1)/2 = (2n+1)!/(2*A061355(2n+1)).
See also A102581, A102582.
Sequence in context: A053050 A033330 A214427 * A134167 A080461 A066578
Adjacent sequences: A102581 A102582 A102583 * A102585 A102586 A102587


KEYWORD

nonn


AUTHOR

Jonathan Sondow, Jan 22 2005


STATUS

approved



