login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102584
a(n) = 1/2 times the cancellation factor in reducing Sum_{k=0 to 2n+1} 1/k! to lowest terms.
0
1, 1, 10, 5, 4, 1, 2, 65, 2000, 1, 26, 247, 20, 5, 2, 19, 8, 115, 10, 23, 52, 31, 10, 65, 416, 37, 2, 25, 20, 1, 38, 1, 40, 325, 1406, 37, 676, 65, 10, 63829, 368, 1, 230, 5, 4, 1, 26, 5, 40, 247, 26, 43, 3100, 9785, 2, 1, 256, 5, 2050, 13, 388, 1, 4810, 1495, 8, 23, 254, 5
OFFSET
1,3
COMMENTS
The denominator of Sum_{k=0 to m} 1/k! is m!/d, where d = A093101(m). If m = 2n+1 > 1, then d is even and a(n) = d/2.
LINKS
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009; Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = gcd(m!, 1+m+m(m-1)+m(m-1)(m-2)+...+m!)/2, where m = 2n+1.
EXAMPLE
1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! = 13700/5040 = (20*685)/(20*252) and 7 = 2*3+1, so a(3) = 20/2 = 10.
PROG
(PARI) a(n) = {my(m = (2*n+1), s = 1, prt = m); for (k=1, m, s += prt; prt *= (m-k); ); gcd(m!, s)/2; } \\ Michel Marcus, Sep 29 2017
CROSSREFS
a(n) = A093101(2n+1)/2 = (2n+1)!/(2*A061355(2n+1)).
See also A102581, A102582.
Sequence in context: A053050 A033330 A214427 * A134167 A080461 A066578
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jan 22 2005
STATUS
approved