login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102339
Numbers k such that k*10^3 + 333 is prime.
2
2, 5, 7, 10, 16, 17, 19, 20, 23, 29, 31, 38, 41, 49, 50, 55, 56, 59, 61, 64, 71, 76, 79, 85, 92, 100, 101, 103, 121, 134, 136, 139, 140, 143, 149, 154, 155, 161, 175, 176, 178, 182, 184, 188, 208, 209, 211, 217, 220, 232, 236, 239, 241, 244, 265, 266, 269, 271, 272, 274, 286, 287, 295, 299, 301, 308
OFFSET
1,1
COMMENTS
10^3 and 333 are relatively prime, therefore by Dirichlet's theorem there are infinitely many primes in the arithmetic progression n*10^3+333. No term of the sequence is of the form 3*k, because 3*k*10^3+333 = 3*(k*10^3+111) is divisible by 3, violating the requirement of the definition. - Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2009
LINKS
Eric Weisstein's World of Mathematics, Dirichlet's Theorem
EXAMPLE
If k=2, then k*10^3 + 333 = 2333 (prime).
If k=49, then k*10^3 + 333 = 49333 (prime).
If k=92, then k*10^3 + 333 = 92333 (prime).
MATHEMATICA
Select[Range[400], PrimeQ[FromDigits[Join[IntegerDigits[#], {3, 3, 3}]]]&] (* Harvey P. Dale, Oct 14 2014 *)
Select[Range[0, 1000], PrimeQ[1000 # + 333] &] (* Vincenzo Librandi, Jan 19 2013 *)
PROG
(Magma) [ n: n in [1..700] | IsPrime(Seqint([3, 3, 3] cat Intseq(n))) ]; // Vincenzo Librandi, Feb 04 2011
(Magma) [ n: n in [0..320] | IsPrime(n*10^3+333) ]; // Klaus Brockhaus, May 20 2009
(PARI) is(n)=isprime(1000*n+333) \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Feb 20 2005
STATUS
approved