OFFSET
1,1
COMMENTS
Generalization of A022008 because the relevant prime-difference pattern has the following form: (4+6a,2+6b,4+6c,2+6d,4+6e), a = 0, b = 1, c = 2, d = 5, e = 10. The primes are congruent to 9 modulo 10, while terminal entries of the quintuplets have the form 10s+3.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2500
FORMULA
a(n) == 19 (mod 30). - Amiram Eldar, Feb 18 2025
EXAMPLE
1455488059 is a prime, followed by consecutive prime difference pattern: {4,8,16,32,64}. The terminal prime is 1455488183.
MATHEMATICA
Select[Partition[Prime[Range[3*10^7]], 6, 1], Differences[#] == 2^Range[2, 6] &][[;; , 1]] (* Amiram Eldar, Feb 18 2025 *)
PROG
(PARI) list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11); forprime(p6 = 13, lim, if(p2 - p1 == 4 && p3 - p2 == 8 && p4 - p3 == 16 && p5 - p4 == 32 && p6 - p5 == 64, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5; p5 = p6); } \\ Amiram Eldar, Feb 18 2025
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Jan 07 2005
EXTENSIONS
a(5)-a(18) from Donovan Johnson, Apr 17 2010
a(19)-a(22) from Amiram Eldar, Feb 18 2025
STATUS
approved