1,1

There are exactly 4 such integers.

n is concatenation of three squares, {n1,n2,n3}^2:

{n........,{n1,n2,n3}}

{162573984,{1,25,272}}

{162573984,{4,5,272}}

{164537289,{1,8,733}}

{164537289,{4,2,733}}

{537289164,{733,1,8}}

{537289164,{733,4,2}}

{739841625,{272,1,25}}

{739841625,{272,4,5}}.

Table of n, a(n) for n=1..4.

Cf. A162450 Zeroless pandigital numbers which are the concatenation of three squares, A162554.

Sequence in context: A151695 A343079 A116643 * A251473 A102337 A295456

Adjacent sequences: A162836 A162837 A162838 * A162840 A162841 A162842

base,fini,full,nonn

Zak Seidov, Jul 14 2009

approved