login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102008 Indices of primes in sequence defined by A(0) = 19, A(n) = 10*A(n-1) - 81 for n > 0. 1
0, 1, 2, 3, 8, 17, 21, 44, 48, 55, 68, 145, 201, 271, 2729, 2840, 4561, 31809, 43185, 48108, 92690 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numbers n such that 10*10^n + 9 is prime.

Numbers n such that digit 1 followed by n >= 0 occurrences of digit 0 followed by digit 9 is prime.

Numbers corresponding to terms <= 271 are certified primes.

a(22) > 2*10^5. - Robert Price, Oct 11 2015

REFERENCES

Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

LINKS

Table of n, a(n) for n=1..21.

Makoto Kamada, Prime numbers of the form 100...009.

FORMULA

a(n) = A088275(n) - 1.

EXAMPLE

1009 is prime, hence 2 is a term.

MATHEMATICA

Select[Range[0, 200000], PrimeQ[10*10^# + 9] &] (* Robert Price, Oct 11 2015 *)

PROG

(PARI) a=19; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-81)

(PARI) for(n=0, 1500, if(isprime(10*10^n + 9), print1(n, ", ")))

CROSSREFS

Cf. A000533, A002275, A088275.

Sequence in context: A277346 A005648 A113947 * A200083 A210701 A158921

Adjacent sequences:  A102005 A102006 A102007 * A102009 A102010 A102011

KEYWORD

nonn,hard,more

AUTHOR

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

EXTENSIONS

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

a(21) from Kamada data by Ray Chandler, May 01 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)