login
A200083
Number of 0..n arrays x(0..4) of 5 elements with zero 3rd differences.
1
2, 3, 8, 17, 26, 43, 64, 89, 122, 163, 208, 269, 334, 407, 496, 597, 702, 831, 968, 1117, 1286, 1471, 1664, 1889, 2122, 2371, 2648, 2945, 3250, 3595, 3952, 4329, 4738, 5171, 5616, 6109, 6614, 7143, 7712, 8309, 8918, 9583, 10264, 10973, 11726, 12511, 13312
OFFSET
1,1
COMMENTS
Row 4 of A200082.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-3) -a(n-5) +a(n-6) -2*a(n-7) +a(n-8) -a(n-9) +a(n-11) +a(n-13) -a(n-14).
Empirical g.f.: x*(2 + x + 5*x^2 + 7*x^3 + 6*x^4 + 11*x^5 + 5*x^6 + 8*x^7 + 3*x^8 + x^9 + 2*x^10 + x^11 + x^12 - x^13) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, May 17 2018
EXAMPLE
Some solutions for n=6:
..2....1....2....3....0....4....0....5....0....6....6....3....6....0....4....3
..3....3....4....4....4....4....0....6....3....2....3....3....3....1....3....5
..3....4....5....4....6....4....0....6....4....0....2....3....1....2....2....6
..2....4....5....3....6....4....0....5....3....0....3....3....0....3....1....6
..0....3....4....1....4....4....0....3....0....2....6....3....0....4....0....5
CROSSREFS
Cf. A200082.
Sequence in context: A005648 A113947 A102008 * A210701 A158921 A064954
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2011
STATUS
approved