The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101769 Numbers p such that p, 2p+1, 3p+2, 4p+3, 5p+4, 6p+5, 7p+6, 8p+7 are primes. 6
 2894219, 60041519, 64523969, 242024369, 407874179, 1092040949, 1092075389, 1674689729, 2281060319, 5035134509, 5329406669, 5683382879, 5792424329, 6000216809, 6380217479, 10409580719, 11488703939, 13745865209, 14181824369, 14904963149, 15002412599, 15412603919 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Jeppe Stig Nielsen, Jul 07 2020: (Start) Each term is -1 modulo 210. The subset p, 2p+1, 4p+3, 8p+7 is a Cunningham chain, cf. A023272. (End) LINKS Jeppe Stig Nielsen, Table of n, a(n) for n = 1..50 Wikipedia, Cunningham chain MATHEMATICA a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5]&&PrimeQ[p*7+6]&&PrimeQ[p*8+7], AppendTo[a, p]], {n, 1, 10^7}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) CROSSREFS Cf. A000040, A005384, A023272, A067256, A067257, A067258, A101767, A101768, A101769, A101770, A336060. Sequence in context: A321669 A237944 A101768 * A237210 A209795 A246054 Adjacent sequences: A101766 A101767 A101768 * A101770 A101771 A101772 KEYWORD nonn,easy AUTHOR Jonathan Vos Post and Ray Chandler, Dec 31 2004 EXTENSIONS a(20)-a(22) from Jeppe Stig Nielsen, Jul 07 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 16:47 EST 2023. Contains 367525 sequences. (Running on oeis4.)