|
|
A101769
|
|
Numbers p such that p, 2p+1, 3p+2, 4p+3, 5p+4, 6p+5, 7p+6, 8p+7 are primes.
|
|
6
|
|
|
2894219, 60041519, 64523969, 242024369, 407874179, 1092040949, 1092075389, 1674689729, 2281060319, 5035134509, 5329406669, 5683382879, 5792424329, 6000216809, 6380217479, 10409580719, 11488703939, 13745865209, 14181824369, 14904963149, 15002412599, 15412603919
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Jeppe Stig Nielsen, Jul 07 2020: (Start)
Each term is -1 modulo 210.
The subset p, 2p+1, 4p+3, 8p+7 is a Cunningham chain, cf. A023272. (End)
|
|
LINKS
|
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..50
Wikipedia, Cunningham chain
|
|
MATHEMATICA
|
a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5]&&PrimeQ[p*7+6]&&PrimeQ[p*8+7], AppendTo[a, p]], {n, 1, 10^7}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
|
|
CROSSREFS
|
Cf. A000040, A005384, A023272, A067256, A067257, A067258, A101767, A101768, A101769, A101770, A336060.
Sequence in context: A321669 A237944 A101768 * A237210 A209795 A246054
Adjacent sequences: A101766 A101767 A101768 * A101770 A101771 A101772
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jonathan Vos Post and Ray Chandler, Dec 31 2004
|
|
EXTENSIONS
|
a(20)-a(22) from Jeppe Stig Nielsen, Jul 07 2020
|
|
STATUS
|
approved
|
|
|
|