login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101497
Expansion of (1-x^2)/(1-2x+2x^3+x^4).
0
1, 2, 3, 4, 3, -2, -15, -40, -79, -126, -157, -116, 99, 638, 1665, 3248, 5121, 6274, 4387, -4716, -27101, -69250, -133455, -207992, -250383, -164606, 220227, 1149212, 2878019, 5480190, 8441729, 9978208, 6118017, -10127614, -48653373, -119520988, -224904765, -342375170
OFFSET
0,2
COMMENTS
Results from applying a Chebyshev transform after an inverse Catalan transform to 1/(1-2x). The inverse Catalan transform maps g(x)->g(x(1-x)) while the Chebyshev transform maps h(x)->(1/(1+x^2))h(x/(1+x^2)).
FORMULA
a(n)=2a(n-1)-2a(n-3)-a(n-4); a(n)=sum{k=0..floor(n/2), sum{j=0..floor((n-2k)/2), C(n-k, k)C(n-2k-j, j)2^(n-2k-j)}}.
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-2x+2x^3+x^4), {x, 0, 80}], x] (* Harvey P. Dale, Mar 14 2011 *)
CROSSREFS
Sequence in context: A111880 A348599 A306461 * A274007 A065870 A377887
KEYWORD
easy,sign
AUTHOR
Paul Barry, Dec 04 2004
STATUS
approved