login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101496
Expansion of (1-x^2)/(1-x-x^2+x^3+x^4).
1
1, 1, 1, 1, 0, -1, -3, -5, -7, -8, -7, -3, 5, 17, 32, 47, 57, 55, 33, -16, -95, -199, -311, -399, -416, -305, -11, 499, 1209, 2024, 2745, 3061, 2573, 865, -2368, -7137, -12943, -18577, -22015, -20512, -11007, 9073, 40593, 81185, 123712, 155231, 157165, 107499, -14279, -219176
OFFSET
0,7
COMMENTS
Results from applying a Chebyshev transform after an inverse Catalan transform to 1/(1-x). The inverse Catalan transform maps g(x)->g(x(1-x)) while the Chebyshev transform maps h(x)->(1/(1+x^2))*h(x/(1+x^2)).
FORMULA
a(n) = a(n-1) +a(n-2) -a(n-3) -a(n-4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor((n-2k)/2)} C(n-k, k)*C(n-2k-j, j).
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x-x^2+x^3+x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 1, -1, -1}, {1, 1, 1, 1}, 50] (* Harvey P. Dale, Jun 05 2012 *)
PROG
(GAP) a:=[1, 1, 1, 1];; for n in [5..50] do a[n]:=a[n-1]+a[n-2]-a[n-3]-a[n-4]; od; Print(a); # Muniru A Asiru, Mar 04 2019
(PARI) my(x='x+O('x^50)); Vec((1-x^2)/(1-x-x^2+x^3+x^4)) \\ G. C. Greubel, Mar 05 2019
(Magma) I:=[1, 1, 1, 1]; [n le 4 select I[n] else Self(n-1) +Self(n-2) - Self(n-3) -Self(n-4): n in [1..50]]; // G. C. Greubel, Mar 05 2019
(Sage) ((1-x^2)/(1-x-x^2+x^3+x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 05 2019
CROSSREFS
Sequence in context: A185168 A131979 A335894 * A218490 A161696 A196084
KEYWORD
easy,sign
AUTHOR
Paul Barry, Dec 04 2004
STATUS
approved