|
|
A101448
|
|
Nonnegative numbers k such that 2k + 11 is prime.
|
|
23
|
|
|
0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 21, 24, 25, 28, 30, 31, 34, 36, 39, 43, 45, 46, 48, 49, 51, 58, 60, 63, 64, 69, 70, 73, 76, 78, 81, 84, 85, 90, 91, 93, 94, 100, 106, 108, 109, 111, 114, 115, 120, 123, 126, 129, 130, 133, 135, 136, 141, 148, 150, 151, 153, 160, 163
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
2 is the smallest single-digit prime and 11 is the smallest two-digit prime.
Solutions of the equation (2*k+11)' = 1, where k' is the arithmetic derivative of k. - Paolo P. Lava, Nov 15 2012
|
|
LINKS
|
Shawn A. Broyles, Table of n, a(n) for n = 1..1000
|
|
EXAMPLE
|
If n=1, then 2*1 + 11 = 13 (prime).
If n=49, then 2*49 + 11 = 109 (prime).
If n=69, then 2*69 + 11 = 149 (prime).
|
|
MAPLE
|
select(k-> isprime(11+2*k), [$0..200])[]; # Alois P. Heinz, Jun 02 2022
|
|
MATHEMATICA
|
Select[Range[0, 200], PrimeQ[2# + 11] &] (* Stefan Steinerberger, Feb 28 2006 *)
|
|
PROG
|
(MAGMA) [n: n in [0..200] | IsPrime(2*n+11)] // Vincenzo Librandi, Nov 17 2010
(PARI) is(n)=isprime(2*n+11) \\ Charles R Greathouse IV, Apr 29 2015
(Sage) [n for n in (0..200) if is_prime(2*n+11) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+11) ) # G. C. Greubel, May 21 2019
|
|
CROSSREFS
|
Cf. A101123, A101086.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), this seq (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
Sequence in context: A191326 A191185 A089986 * A299231 A005122 A166161
Adjacent sequences: A101445 A101446 A101447 * A101449 A101450 A101451
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Parthasarathy Nambi, Jan 24 2005
|
|
EXTENSIONS
|
More terms from Stefan Steinerberger, Feb 28 2006
Definition clarified by Zak Seidov, Jul 11 2014
|
|
STATUS
|
approved
|
|
|
|