The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100872 a(n) = (1/sqrt(5)) * Sum_{k>0} k^(2n)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622. 5
 1, 13, 421, 25453, 2473141, 352444093, 69251478661, 17943523153933, 5927841361456981, 2431910546406522973, 1212989379862721528101, 722875495525684291639213, 507275965883448333971692021, 414031618935013558427928710653, 388884101194230308462039862028741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A bisection of "Stirling-Bernoulli transform" of Fibonacci numbers. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..223 FORMULA a(n) = A050946(2*n). From Peter Bala, Aug 20 2014: (Start) E.g.f.: -1/2 + 1/2*exp(z)/(3*exp(z) - exp(2*z) - 1) = z^2/2! + 13*z^4/4! + 421*z^6/6! + .... a(n) = Sum_{k = 1..n} 2^k*A241171(n,k). a(n) = Sum_{1 <= j <= k <= n} (-1)^(k-j)*binomial(2*k,k+j)*j^(2*n). (End) MATHEMATICA FullSimplify[Table[PolyLog[-2k, GoldenRatio^(-2)]/Sqrt[5], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *) T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[_, 1] = 1; T[_, _] = 0; a[n_] := Sum[2^(k-1) T[n, k], {k, 1, n}]; Array[a, 15] (* Jean-François Alcover, Jul 03 2019 *) PROG (PARI) a(n)=round(1/sqrt(5)*sum(k=1, 500, k^(2*n)/((1+sqrt(5))/2)^(2*k))) CROSSREFS Cf. A001622, A050946, A100868, A241171. Sequence in context: A098890 A012023 A081442 * A012045 A012109 A012084 Adjacent sequences:  A100869 A100870 A100871 * A100873 A100874 A100875 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Jan 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:23 EST 2021. Contains 349563 sequences. (Running on oeis4.)