|
|
A100758
|
|
Greatest prime factor of the concatenation of terms of the n-th row of the triangle formed by the Stirling number of the second kind.
|
|
1
|
|
|
11, 131, 587, 1646443, 6827, 18011869, 9120065483, 363724245921599, 975761724248252813688864599, 17542508725666616033, 111131968773953028264114836512440131291369683
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Are these concatenations squarefree?
|
|
LINKS
|
Table of n, a(n) for n=2..12.
|
|
FORMULA
|
a(n) = A006530[A061113(n)]. - R. J. Mathar, Aug 07 2007
|
|
EXAMPLE
|
a(4) = 587 is the greatest prime factor of 1761 =3*587.
|
|
CROSSREFS
|
Cf. A100755, A100756, A100757, A008277.
Sequence in context: A201484 A216573 A140004 * A083763 A185127 A287295
Adjacent sequences: A100755 A100756 A100757 * A100759 A100760 A100761
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Amarnath Murthy, Nov 23 2004
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Aug 07 2007
|
|
STATUS
|
approved
|
|
|
|