login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100736
Inverse modulo 2 binomial transform of 3^n.
1
1, 2, 8, 16, 80, 160, 640, 1280, 6560, 13120, 52480, 104960, 524800, 1049600, 4198400, 8396800, 43046720, 86093440, 344373760, 688747520, 3443737600, 6887475200, 27549900800, 55099801600, 282386483200, 564772966400
OFFSET
0,2
COMMENTS
3^n may be retrieved as Sum_{k=0..n} (binomial(n,k) mod 2)*A100736(k).
FORMULA
a(n) = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n, k) mod 2)*3^k.
PROG
(PARI) a(n)=abs(sum(k=0, n, (-1)^(hammingweight(k)%2)* lift(Mod(binomial(n, k), 2))*3^k)) \\ Jianing Song, Jan 27 2019
CROSSREFS
Sequence in context: A098232 A354275 A195798 * A099888 A249308 A353820
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved