login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100472
Inverse modulo 2 modulo transform of 9^n.
1
1, 8, 80, 640, 6560, 52480, 524800, 4198400, 43046720, 344373760, 3443737600, 27549900800, 282386483200, 2259091865600, 22590918656000, 180727349248000, 1853020188851840, 14824161510814720, 148241615108147200
OFFSET
0,2
COMMENTS
9^n may be retrieved as 9^n = Sum_{k=0..n} (binomial(n,k) mod 2)*a(k).
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^A010060(n-k) * (binomial(n, k) mod 2) * 9^k.
a(n) = Sum_{k=0..n} A106400(n-k) * (binomial(n, k) mod 2) * 9^k. - G. C. Greubel, Apr 06 2023
MATHEMATICA
A100472[n_]:= A100472[n]= Sum[(-1)^ThueMorse[n-j]*Mod[Binomial[n, j], 2]*9^j, {j, 0, n}];
Table[A100472[n], {n, 0, 30}] (* G. C. Greubel, Apr 06 2023 *)
PROG
(Magma)
A106400:= func< n | 1 - 2*(&+Intseq(n, 2) mod(2)) >;
A100472:= func< n | (&+[A106400(n-j)*(Binomial(n, j) mod 2)*9^j: j in [0..n]]) >;
[A100472(n): n in [0..30]]; // G. C. Greubel, Apr 06 2023
(SageMath)
@CachedFunction
def A010060(n): return (bin(n).count('1')%2)
def A100472(n): return sum((-1)^A010060(n-k)*(binomial(n, k)%2)*9^k for k in range(n+1))
[A100472(n) for n in range(31)] # G. C. Greubel, Apr 06 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved