login
A165760
a(n) = (16-9*8^n)/7.
2
1, -8, -80, -656, -5264, -42128, -337040, -2696336, -21570704, -172565648, -1380525200, -11044201616, -88353612944, -706828903568, -5654631228560, -45237049828496, -361896398627984, -2895171189023888, -23161369512191120
OFFSET
0,2
FORMULA
a(n) = 8*a(n-1)-16, a(0)=1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0)= 1, a(1)= -8, for n>1.
G.f.: (1-17x)/(1-9x+8x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-9)^(n-k).
E.g.f.: (1/7)*(16*exp(x) - 9*exp(8*x)). - G. C. Greubel, Apr 07 2016
MATHEMATICA
(16-9*8^Range[0, 50])/7 (* or *) LinearRecurrence[{9, -8}, {1, -8}, 50] (* G. C. Greubel, Apr 07 2016 *)
PROG
(PARI) x='x+O('x^99); Vec((1-17*x)/(1-9*x+8*x^2)) \\ Altug Alkan, Apr 08 2016
CROSSREFS
Cf. A112555.
Sequence in context: A203290 A100472 A043035 * A166157 A145729 A280121
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved