login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165760
a(n) = (16-9*8^n)/7.
2
1, -8, -80, -656, -5264, -42128, -337040, -2696336, -21570704, -172565648, -1380525200, -11044201616, -88353612944, -706828903568, -5654631228560, -45237049828496, -361896398627984, -2895171189023888, -23161369512191120
OFFSET
0,2
FORMULA
a(n) = 8*a(n-1)-16, a(0)=1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0)= 1, a(1)= -8, for n>1.
G.f.: (1-17x)/(1-9x+8x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-9)^(n-k).
E.g.f.: (1/7)*(16*exp(x) - 9*exp(8*x)). - G. C. Greubel, Apr 07 2016
MATHEMATICA
(16-9*8^Range[0, 50])/7 (* or *) LinearRecurrence[{9, -8}, {1, -8}, 50] (* G. C. Greubel, Apr 07 2016 *)
PROG
(PARI) x='x+O('x^99); Vec((1-17*x)/(1-9*x+8*x^2)) \\ Altug Alkan, Apr 08 2016
CROSSREFS
Cf. A112555.
Sequence in context: A203290 A100472 A043035 * A166157 A145729 A280121
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved