login
A100452
Triangle read by rows, based on array described below.
6
1, 3, 4, 7, 8, 9, 13, 14, 15, 16, 19, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 39, 40, 42, 44, 45, 48, 49, 49, 50, 51, 52, 55, 60, 63, 64, 63, 64, 66, 68, 70, 72, 77, 80, 81, 79, 80, 81, 84, 85, 90, 91, 96, 99, 100, 91, 92, 93, 96, 100, 102, 105, 112, 117, 120, 121
OFFSET
1,2
COMMENTS
The interesting property of this array is that the main diagonal gives A000960.
LINKS
H. Killingbergtro and C. U. Jensen, Problem 116, Nord. Mat. Tidskr. 5 (1957), 160-161.
FORMULA
Form an array a(m,n) (n >= 1, 1 <= m <= n) by: a(1,n) = n^2 for all n; a(m+1,n) = (n-m)*floor( (a(m,n)-1)/(n-m) ) for 1 <= m <= n-1.
EXAMPLE
Array begins:
1 4 9 16 25 36 49 64 81 100 ...
3 8 15 24 35 48 63 80 99 ...
7 14 21 32 45 60 77 96 ...
13 20 30 44 55 72 91 ...
19 28 42 52 70 90 ...
and triangle begins:
1
3 4
7 8 9
13 14 15 16
19 20 21 24 25
27 28 30 32 35 36
...
MATHEMATICA
max=11; a[1, n_]:= n^2;
a[m_, n_]/; 1<m<=n := a[m, n]= (n-m+1)*Floor@((a[m-1, n] -1)/(n-m+1));
a[_, _]=0;
t= Table[a[m, n], {m, max}, {n, m, max}];
Flatten[Table[t[[m-n+1, n]], {m, max}, {n, m}]] (* Jean-François Alcover, Feb 21 2012 *)
PROG
(Magma)
function t(n, k) // t = A100452
if k eq 1 then return n^2;
else return (n-k+1)*Floor((t(n, k-1) -1)/(n-k+1));
end if;
end function;
[t(n, n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 07 2023
(SageMath)
def t(n, k): # t = A100452
if (k==1): return n^2
else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1))
flatten([[t(n, n-k+1) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Apr 07 2023
CROSSREFS
Column sums give A100454.
Row 1 = A000290, row 2 = A000290 - 1, row 3 = A100451.
See also A100461.
Sequence in context: A154366 A226227 A319736 * A004201 A109054 A350690
KEYWORD
nonn,tabl,nice
AUTHOR
N. J. A. Sloane, Nov 22 2004
STATUS
approved