login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319736
The lexicographically earliest increasing sequence such that n divides the sum of the first a(n) terms.
1
1, 3, 4, 7, 8, 9, 12, 16, 18, 19, 20, 23, 24, 25, 26, 33, 34, 42, 46, 48, 49, 50, 59, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 78, 79, 80, 81, 82, 83, 84, 85, 98, 99, 100, 101, 115, 116, 131, 133, 155, 156, 157, 158, 159, 160, 161, 162, 163, 169, 170, 189, 190
OFFSET
1,2
COMMENTS
Sequence b(n) of the sums of the first a(n) terms = Sum_{k=1..a(n)} a(k): 1, 8, 15, 44, 60, 78, 140, 248, 324, 370, 418, 576, 637, 700, 765, 1248, ...
Sequence c(n) of quotients when a(n) is calculated = (Sum_{k=1..a(n)} a(k) ) / n: 1, 4, 5, 11, 12, 13, 20, 31, 36, 37, 38, 48, 49, 50, 51, 78, 78, 111, ...
Is there a lexicographically earliest bijective sequence such that n divides the sum of the first a(n) terms?
EXAMPLE
a(1) = 1 because n = 1 divides the sum of the first 1 term.
a(2) is not 2 because 2 not divide the sum of the first a(2)= 2 terms (i.e., 1 + 2).
a(2) = 3 because 3 is the smallest number > a(1) such that 3 divides the sum of the first a(2)= 3 terms if a(3) = 4 whereas a(3) > a(2).
a(3) = 4.
a(4) = 7 because 7 is the smallest number > a(3) such that n = 3 divides the sum of the first 4 (i.e., a(3)) terms.
a(5) = 8 and a(6) = 9; a(4) < a(5) < a(6).
a(7) = 12 because 12 is the smallest number > a(6) such that n = 4 divides the sum of the first 7 (i.e., a(4)) terms.
a(8) = 16 because 16 is the smallest number > a(7) such that n = 5 divides the sum of the first 8 (i.e., a(5)) terms.
CROSSREFS
Cf. A005408 (similar sequence for n divides the sum of first n terms).
Sequence in context: A175054 A154366 A226227 * A100452 A004201 A109054
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 26 2018
STATUS
approved