Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 19 2017 03:14:37
%S 586951,1473257,4982941,13565441,24954141,25384714,26576686,32026196,
%T 35797623,35953989,37972276,39048260,51755761,58769257,60682681,
%U 71342703,77863117,80826231,84766857,89768134,98363506,110482826,115045547,115898807,120797465
%N Numbers n such that for m=n to n+9, A006530(m) decreases.
%C A006530(n) is the largest prime factor of n.
%H Donovan Johnson, <a href="/A100386/b100386.txt">Table of n, a(n) for n = 1..1000</a>
%e 586951 is here because the largest prime factors of 586951..586960 are 586951,73369,21739,9467,1319,1193,1181,1091,677,29.
%t <<NumberTheory`NumberTheoryFunctions` {ta={{0}},tm=TimeUsed[]}; mxp[x_] :=Max[PrimeFactorList[x]] Do[g=n;s1=mxp[n];s2=mxp[n+1];s3=mxp[n+2];s4=mxp[n+3];s5=mxp[n+4];s6=mxp[n+5]; s7=mxp[n+6];s8=mxp[n+7];s9=mxp[n+8];s10=mxp[n+9]; If[ !Greater[s2,s1]&&!Greater[s3,s2]&&!Greater[s4,s3]&& !Greater[s5,s4]&&!Greater[s6,s5]&&!Greater[s7,s6]&& !Greater[s8,s7]&&!Greater[s9,s8]&&!Greater[s10,s9], Print[{n,{s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}}]; ta=Append[ta,n]],{n,586950,21977000}];ta
%t Position[Partition[Table[FactorInteger[n][[-1,1]],{n,121*10^6}],10,1],_?(Max[Differences[#]]<0&),{1},Heads->False]//Flatten (* _Harvey P. Dale_, Sep 18 2016 *)
%Y Cf. A006530, A070087, A071870, A100385.
%K nonn
%O 1,1
%A _Labos Elemer_, Dec 09 2004
%E Edited by _Don Reble_, Jun 13 2007