login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100386
Numbers n such that for m=n to n+9, A006530(m) decreases.
3
586951, 1473257, 4982941, 13565441, 24954141, 25384714, 26576686, 32026196, 35797623, 35953989, 37972276, 39048260, 51755761, 58769257, 60682681, 71342703, 77863117, 80826231, 84766857, 89768134, 98363506, 110482826, 115045547, 115898807, 120797465
OFFSET
1,1
COMMENTS
A006530(n) is the largest prime factor of n.
LINKS
EXAMPLE
586951 is here because the largest prime factors of 586951..586960 are 586951,73369,21739,9467,1319,1193,1181,1091,677,29.
MATHEMATICA
<<NumberTheory`NumberTheoryFunctions` {ta={{0}}, tm=TimeUsed[]}; mxp[x_] :=Max[PrimeFactorList[x]] Do[g=n; s1=mxp[n]; s2=mxp[n+1]; s3=mxp[n+2]; s4=mxp[n+3]; s5=mxp[n+4]; s6=mxp[n+5]; s7=mxp[n+6]; s8=mxp[n+7]; s9=mxp[n+8]; s10=mxp[n+9]; If[ !Greater[s2, s1]&&!Greater[s3, s2]&&!Greater[s4, s3]&& !Greater[s5, s4]&&!Greater[s6, s5]&&!Greater[s7, s6]&& !Greater[s8, s7]&&!Greater[s9, s8]&&!Greater[s10, s9], Print[{n, {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}}]; ta=Append[ta, n]], {n, 586950, 21977000}]; ta
Position[Partition[Table[FactorInteger[n][[-1, 1]], {n, 121*10^6}], 10, 1], _?(Max[Differences[#]]<0&), {1}, Heads->False]//Flatten (* Harvey P. Dale, Sep 18 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 09 2004
EXTENSIONS
Edited by Don Reble, Jun 13 2007
STATUS
approved