login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100069
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*4^(n-2*k).
3
1, 4, 18, 76, 326, 1384, 5892, 25036, 106438, 452344, 1922588, 8170936, 34726940, 147589264, 627256088, 2665837516, 11329815878, 48151714264, 204644809932, 869740430056, 3696396920116, 15709686864304, 66766169526008, 283756220309176, 1205963937666076, 5125346734404784
OFFSET
0,2
COMMENTS
An inverse Chebyshev transform of x/(1-4*x), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. In general, Sum_{k=0..floor(n/2)} binomial(n,k) * r^(n-2*k) has g.f. 2*x/(sqrt(1-4*x^2)*(r*sqrt(1-4*x^2) + 2*x - r)). - corrected by Vaclav Kotesovec, Dec 06 2012
Generally (for r>1), a(n) ~ (r + 1/r)^n. - Vaclav Kotesovec, Dec 06 2012
LINKS
FORMULA
G.f.: x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2)). - corrected by Vaclav Kotesovec, Dec 06 2012
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*4^(n-2*k).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*4^k/2.
8*n*a(n) = 2*(19*n-4)*a(n-1) + (15*n+2)*a(n-2) - 8*(19*n-23)*a(n-3) + 68*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 22 2012
a(n) ~ 17^n/4^n. - Vaclav Kotesovec, Dec 06 2012
MATHEMATICA
CoefficientList[Series[x/(Sqrt[1-4*x^2]*(2*Sqrt[1-4*x^2]+x-2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2))) \\ Joerg Arndt, May 12 2013
(Magma) m:=4; [(&+[Binomial(n, k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 08 2022
(SageMath) m=4; [sum(binomial(n, k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 02 2004
STATUS
approved