Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 09 2022 02:25:05
%S 1,4,18,76,326,1384,5892,25036,106438,452344,1922588,8170936,34726940,
%T 147589264,627256088,2665837516,11329815878,48151714264,204644809932,
%U 869740430056,3696396920116,15709686864304,66766169526008,283756220309176,1205963937666076,5125346734404784
%N a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*4^(n-2*k).
%C An inverse Chebyshev transform of x/(1-4*x), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. In general, Sum_{k=0..floor(n/2)} binomial(n,k) * r^(n-2*k) has g.f. 2*x/(sqrt(1-4*x^2)*(r*sqrt(1-4*x^2) + 2*x - r)). - corrected by _Vaclav Kotesovec_, Dec 06 2012
%C Generally (for r>1), a(n) ~ (r + 1/r)^n. - _Vaclav Kotesovec_, Dec 06 2012
%H Vincenzo Librandi, <a href="/A100069/b100069.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2)). - corrected by _Vaclav Kotesovec_, Dec 06 2012
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*4^(n-2*k).
%F a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*4^k/2.
%F 8*n*a(n) = 2*(19*n-4)*a(n-1) + (15*n+2)*a(n-2) - 8*(19*n-23)*a(n-3) + 68*(n-3)*a(n-4) = 0. - _R. J. Mathar_, Nov 22 2012
%F a(n) ~ 17^n/4^n. - _Vaclav Kotesovec_, Dec 06 2012
%t CoefficientList[Series[x/(Sqrt[1-4*x^2]*(2*Sqrt[1-4*x^2]+x-2)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 06 2012 *)
%o (PARI) my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(2*sqrt(1-4*x^2)+x-2))) \\ _Joerg Arndt_, May 12 2013
%o (Magma) m:=4; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // _G. C. Greubel_, Jun 08 2022
%o (SageMath) m=4; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # _G. C. Greubel_, Jun 08 2022
%Y Cf. A027306, A100067, A100068.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Nov 02 2004