login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100072
Decimal expansion of Product_{n>=1} (1/e * (1/(3*n)+1)^(3*n+1/2)).
0
1, 0, 1, 2, 3, 7, 8, 5, 5, 2, 7, 2, 2, 9, 1, 2, 2, 4, 9, 5, 3, 9, 6, 0, 2, 9, 6, 0, 4, 9, 6, 6, 8, 8, 6, 9, 2, 9, 7, 8, 0, 4, 4, 8, 7, 5, 8, 6, 9, 1, 7, 7, 1, 5, 0, 2, 8, 2, 0, 2, 2, 6, 5, 9, 5, 9, 2, 9, 3, 5, 4, 3, 2, 4, 3, 1, 0, 7, 8, 0, 9, 2, 3, 4, 6, 6, 1, 5, 9, 2, 9, 7, 4, 0, 3, 1, 1, 5, 8, 6, 8, 2
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Infinite Product
FORMULA
3^(13/24) * exp(1 + (2*Pi^2 - 3*PolyGamma(1, 1/3))/(12*sqrt(3)*Pi)) * sqrt(Gamma(1/3)/(2*Pi)) / A^4, where A = A074962 is the Glaisher-Kinkelin constant.
EXAMPLE
1.012378552722912249539602960496688692978044875869177150282...
MAPLE
evalf(product(exp(-1)*(1/(3*n)+1)^(3*n+1/2), n = 1..infinity), 104); # Vaclav Kotesovec, Aug 16 2015
MATHEMATICA
RealDigits[(3^(13/24)*E^(1 + (2*Pi^2 - 3*PolyGamma[1, 1/3])/(12*Sqrt[3]*Pi)) * Sqrt[Gamma[1/3]/(2*Pi)])/Glaisher^4, 10, 100][[1]] (* Vaclav Kotesovec, Aug 16 2015 after Eric W. Weisstein *)
N[Product[1/E*(1/(3*n) + 1)^(3*n + 1/2), {n, 1, Infinity}], 101] (* Vaclav Kotesovec, Aug 16 2015 *)
CROSSREFS
Cf. A074962.
Sequence in context: A199466 A199966 A011027 * A215722 A324777 A244162
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Nov 02 2004
STATUS
approved