OFFSET
0,1
REFERENCES
C. Caldwell and H. Dubner, "Primorial, factorial and multifactorial primes," Math. Spectrum, 26:1 (1993/4) 1-7.
LINKS
Chris Caldwell, multifactorial prime (another Prime Pages' Glossary entries).
Ken Davis, Status of Search for Multifactorial Primes.
Sean A. Irvine, Factorizations of n!+7
EXAMPLE
Example 1!+7 = 2^3 so a(1) = 3.
a(3) = a(4) = a(5) = a(6) = 1 because 3!+1 = 13, 4!+7 = 31, 5!+1 = 127, 6!+7 = 727 and these are all primes. a(11) = a(15) = a(16) = a(25) = a(35) = a(59) = 2 because 11!+7 = 39916807 = 7 * 5702401, 15!+7 = 1307674368007 = 7 * 186810624001, 16!+7 = 20922789888007 = 7 * 2988969984001, 25!+7 = 15511210043330985984000007 = 7 * 2215887149047283712000001, 35!+7 = 10333147966386144929666651337523200000007 = 7 *
1476163995198020704238093048217600000001 and 59!+7 = 138683118545689835737939019720389406345902876772687432540821294940160000000000007 = 7 * 19811874077955690819705574245769915192271839538955347505831613562880000000000001 are all semiprimes.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 18 2004
EXTENSIONS
More terms from Sean A. Irvine, Sep 20 2012
STATUS
approved