

A099945


Number of 4 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0).


0



188, 404, 836, 1700, 3428, 6884, 13796, 27620, 55268, 110564, 221156, 442340, 884708, 1769444, 3538916, 7077860, 14155748, 28311524, 56623076, 113246180, 226492388, 452984804, 905969636, 1811939300, 3623878628, 7247757284
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 01 matrices in question is given by (m+3)*2^(m+n2)2^n2^(m+1)+4 for m>0 and n>2; for n=2 the number is (m+1)*2^m.


LINKS



FORMULA

a(n) = 27*2^n28.


PROG

(PARI) vector(50, n, i=n+2; 27*2^i28) \\ Michel Marcus, Dec 01 2014


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



