login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099885
Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).
4
1, 2, 6, 12, 20, 40, 120, 240, 272, 544, 1632, 3264, 5440, 10880, 32640, 65280, 65792, 131584, 394752, 789504, 1315840, 2631680, 7895040, 15790080, 17895424, 35790848, 107372544, 214745088, 357908480, 715816960, 2147450880, 4294901760
OFFSET
0,2
COMMENTS
XOR BINOMIAL transform of this sequence is A099886.
LINKS
Eric Weisstein's World of Mathematics, Rule 102
FORMULA
a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
It appears that a(2*n) = A117998(n). - Peter Bala, Feb 01 2017
EXAMPLE
XOR difference triangle of the powers of 2 (A099884) begins:
.
(central terms)
|
|
1;
2, 3;
4, 6, 5;
8, 12, 10, 15;
16, 24, 20, 30, 17;
32, 48, 40, 60, 34, 51;
64, 96, 80, 120, 68, 102, 85;
128, 192, 160, 240, 136, 204, 170, 255;
...
PROG
(PARI) {a(n)=local(B); B=0; for(i=0, n\2, B=bitxor(B, binomial(n\2, i)%2*2^(n\2-i))); 2^((n+1)\2)*B}
(Python)
def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<<k for k in range((n>>1)+1))<<(n+1>>1) # Chai Wah Wu, May 03 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Oct 28 2004
STATUS
approved