Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 04 2023 02:21:36
%S 1,2,6,12,20,40,120,240,272,544,1632,3264,5440,10880,32640,65280,
%T 65792,131584,394752,789504,1315840,2631680,7895040,15790080,17895424,
%U 35790848,107372544,214745088,357908480,715816960,2147450880,4294901760
%N Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).
%C XOR BINOMIAL transform of this sequence is A099886.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule102.html">Rule 102</a>
%F a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
%F It appears that a(2*n) = A117998(n). - _Peter Bala_, Feb 01 2017
%e XOR difference triangle of the powers of 2 (A099884) begins:
%e .
%e (central terms)
%e |
%e |
%e 1;
%e 2, 3;
%e 4, 6, 5;
%e 8, 12, 10, 15;
%e 16, 24, 20, 30, 17;
%e 32, 48, 40, 60, 34, 51;
%e 64, 96, 80, 120, 68, 102, 85;
%e 128, 192, 160, 240, 136, 204, 170, 255;
%e ...
%o (PARI) {a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B}
%o (Python)
%o def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<<k for k in range((n>>1)+1))<<(n+1>>1) # _Chai Wah Wu_, May 03 2023
%Y Cf. A099884, A001317, A099886, A117998.
%K nonn,easy
%O 0,2
%A _Paul D. Hanna_, Oct 28 2004