|
|
A099799
|
|
a(n) = least integer that begins a run of exactly n consecutive integers that can be the hypotenuse of a Pythagorean triangle.
|
|
1
|
|
|
5, 25, 39, 50, 218, 775, 949, 673, 403, 1597, 2190, 2820, 6050, 8577, 12423, 27325, 34075, 52754, 37088, 74649, 68150, 43795, 106368, 102227, 225809, 149297, 87594, 694398, 820953, 575377, 741617, 776230, 169160, 2218014
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(35), a(37), a(38)>3*10^6; a(36)=2906397, a(39)=1884817.
|
|
LINKS
|
|
|
MATHEMATICA
|
lmt = 5*10^6; hyp = {5}; Do[ mn = m^2 + n^2; hyp = Join[hyp, Table[k*mn, {k, Floor[lmt/mn]}]]; hyp = Union[hyp], {n, 2, Floor[ Sqrt[lmt]]}, {m, Min[n - 1, Floor[ Sqrt[ lmt - n^2]]]}]; f[n_] := Block[{k = 1}, While[ phk[[k]] + n - 1 != phk[[k + n - 1]], k++ ]; phk[[k]]]; Do[ Print[ f[n]], {n, 34}
|
|
CROSSREFS
|
Least integer that begins a run of at least n consecutive integers that can be the hypotenuse of a Pythagorean triangle is given by A098993.
|
|
KEYWORD
|
nonn,more,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|