|
|
A070388
|
|
a(n) = 5^n mod 42.
|
|
1
|
|
|
1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n)= 2*a(n-1) - 2*a(n-2) + a(n-3).
G.f.: (1+3*x+17*x^2)/((1-x)*(x^2-x+1)). (End)
a(n) = (1/15)*{61*(n mod 6)+71*[(n+1) mod 6]+31*[(n+2) mod 6]-19*[(n+3) mod 6]-29*[(n+4) mod 6]+11*[(n+5) mod 6]}, with n>=0. - Paolo P. Lava, Apr 16 2010
a(n) = a(n-1) - a(n-2) + 21, n>=2. - R. J. Mathar, Nov 07 2015
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [power_mod(5, n, 42) for n in range(0, 78)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n) = lift(Mod(5, 42)^n); \\ Altug Alkan, Mar 16 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|