The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070388 a(n) = 5^n mod 42. 1
 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17, 1, 5, 25, 41, 37, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2, -2, 1). FORMULA From R. J. Mathar, Dec 16 2009: (Start) a(n)= 2*a(n-1) - 2*a(n-2) + a(n-3). G.f.: (1+3*x+17*x^2)/((1-x)*(x^2-x+1)). (End) a(n) = (1/15)*{61*(n mod 6)+71*[(n+1) mod 6]+31*[(n+2) mod 6]-19*[(n+3) mod 6]-29*[(n+4) mod 6]+11*[(n+5) mod 6]}, with n>=0. - Paolo P. Lava, Apr 16 2010 a(n) = a(n-1) - a(n-2) + 21, n>=2. - R. J. Mathar, Nov 07 2015 a(n) = a(n-6). - G. C. Greubel, Mar 16 2016 MATHEMATICA PowerMod[5, Range[0, 50], 42] (* G. C. Greubel, Mar 16 2016 *) PROG (Sage) [power_mod(5, n, 42) for n in range(0, 78)] # Zerinvary Lajos, Nov 26 2009 (PARI) a(n) = lift(Mod(5, 42)^n); \\ Altug Alkan, Mar 16 2016 CROSSREFS Sequence in context: A098993 A099799 A093534 * A250314 A293571 A294256 Adjacent sequences: A070385 A070386 A070387 * A070389 A070390 A070391 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 03:28 EST 2023. Contains 367681 sequences. (Running on oeis4.)