|
|
A098808
|
|
a(n) = 2^(n + 11) - 11.
|
|
0
|
|
|
2037, 4085, 8181, 16373, 32757, 65525, 131061, 262133, 524277, 1048565, 2097141, 4194293, 8388597, 16777205, 33554421, 67108853, 134217717, 268435445, 536870901, 1073741813, 2147483637, 4294967285, 8589934581, 17179869173
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..23.
T. Skolem, S. Chowla and D. J. Lewis, The diophantine equation 2^(n+2) - 7 = x^2 and related problems, Proc. Amer. Math. Soc., 10 (1959), 663-669.
Index entries for linear recurrences with constant coefficients, signature (3,-2).
|
|
FORMULA
|
From Colin Barker, May 11 2012: (Start)
a(n) = 3*a(n-1)-2*a(n-2).
G.f.: (2037-2026*x)/((1-x)*(1-2*x)). (End)
|
|
EXAMPLE
|
a(0) = 2^11 - 11 = 2037.
a(1) = 2^12 - 11 = 4085.
|
|
MATHEMATICA
|
Table[2^(n + 11) - 11, {n, 0, 30}] (* Stefan Steinerberger, Mar 06 2006 *)
|
|
PROG
|
(PARI) first(m)=vector(m, i, i--; 2^(i + 11) - 11) \\ Anders Hellström, Aug 26 2015
|
|
CROSSREFS
|
Cf. A038198, A060728.
Sequence in context: A145721 A103126 A045869 * A212477 A020413 A031806
Adjacent sequences: A098805 A098806 A098807 * A098809 A098810 A098811
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Parthasarathy Nambi, Oct 06 2004
|
|
EXTENSIONS
|
More terms from Stefan Steinerberger, Mar 06 2006
|
|
STATUS
|
approved
|
|
|
|