login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098757 Smallest available integer which fits into the repeating pattern 02468. 0
0, 2, 4, 6, 80, 24, 680, 246, 802, 46, 8024, 6802, 4680, 24680, 246802, 46802, 468024, 68024, 680246, 80246, 8024680, 2468024, 68024680, 24680246, 80246802, 4680246, 802468024, 680246802, 468024680, 2468024680, 24680246802, 4680246802 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) must be chosen so its rightmost digit is not 8 (so that the next term won't start with 0). - Sam Alexander, Jan 04 2005

If n>=20, then a(n) is a(n-16) with one period 24680 (or a suitable cyclic permutation thereof) appended (or prepended, or inserted, whatever one prefers). [From Hagen von Eitzen, Jun 18 2009]

LINKS

Table of n, a(n) for n=0..31.

FORMULA

Let (c[0], c[1], ..., c[15]) = (8024600, 2468000, 68024000, 24680000, 80246000, 4680200, 802460000, 680240000, 468020000, 2468000000, 24680000000, 4680200000, 46802000000, 6802400000,68024000000,8024600000), i.e. c[r] = a[r+20] - a[r+4] for 0 <= r < 16. If n>=4, then writing n = 16*k + r + 4 with 0<=r<16 we have a(n) = floor( c[r]*100000^k/99999 ). [From Hagen von Eitzen, Jun 18 2009]

G.f.: -4 + 2 x - 2 x^2 + 6 x^3 + (4 + 6 x^2 + 80 x^4 + 24 x^5 + 680 x^6 + 246 x^7 + 802 x^8 + 46 x^9 + 8024 x^10 + 6802 x^11 + 4680 x^12 + 24680 x^13 + 246802 x^14 + 46802 x^15 + 68020 x^16 + 68024 x^17 + 80240 x^18 + 80246 x^19 + 24600 x^20 + 68000 x^21 + 24000 x^22 + 80000 x^23 + 46000 x^24 + 80200 x^25 + 60000 x^26 + 40000 x^27 + 20000 x^28 - 200000 x^30)/(1 - 100001 x^16 + 100000 x^32) [From Hagen von Eitzen, Jul 19 2009]

CROSSREFS

Sequence in context: A348244 A066220 A009257 * A335709 A056012 A259050

Adjacent sequences:  A098754 A098755 A098756 * A098758 A098759 A098760

KEYWORD

base,easy,nonn

AUTHOR

Eric Angelini, Oct 01 2004

EXTENSIONS

More terms from Sam Alexander, Jan 04 2005

More terms from Hagen von Eitzen, Jun 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 15:34 EDT 2021. Contains 348091 sequences. (Running on oeis4.)