login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098757 Smallest available integer which fits into the repeating pattern 02468. 0

%I

%S 0,2,4,6,80,24,680,246,802,46,8024,6802,4680,24680,246802,46802,

%T 468024,68024,680246,80246,8024680,2468024,68024680,24680246,80246802,

%U 4680246,802468024,680246802,468024680,2468024680,24680246802,4680246802

%N Smallest available integer which fits into the repeating pattern 02468.

%C a(n) must be chosen so its rightmost digit is not 8 (so that the next term won't start with 0). - _Sam Alexander_, Jan 04 2005

%C If n>=20, then a(n) is a(n-16) with one period 24680 (or a suitable cyclic permutation thereof) appended (or prepended, or inserted, whatever one prefers). [From _Hagen von Eitzen_, Jun 18 2009]

%F Let (c[0], c[1], ..., c[15]) = (8024600, 2468000, 68024000, 24680000, 80246000, 4680200, 802460000, 680240000, 468020000, 2468000000, 24680000000, 4680200000, 46802000000, 6802400000,68024000000,8024600000), i.e. c[r] = a[r+20] - a[r+4] for 0 <= r < 16. If n>=4, then writing n = 16*k + r + 4 with 0<=r<16 we have a(n) = floor( c[r]*100000^k/99999 ). [From _Hagen von Eitzen_, Jun 18 2009]

%F G.f.: -4 + 2 x - 2 x^2 + 6 x^3 + (4 + 6 x^2 + 80 x^4 + 24 x^5 + 680 x^6 + 246 x^7 + 802 x^8 + 46 x^9 + 8024 x^10 + 6802 x^11 + 4680 x^12 + 24680 x^13 + 246802 x^14 + 46802 x^15 + 68020 x^16 + 68024 x^17 + 80240 x^18 + 80246 x^19 + 24600 x^20 + 68000 x^21 + 24000 x^22 + 80000 x^23 + 46000 x^24 + 80200 x^25 + 60000 x^26 + 40000 x^27 + 20000 x^28 - 200000 x^30)/(1 - 100001 x^16 + 100000 x^32) [From _Hagen von Eitzen_, Jul 19 2009]

%K base,easy,nonn

%O 0,2

%A _Eric Angelini_, Oct 01 2004

%E More terms from _Sam Alexander_, Jan 04 2005

%E More terms from _Hagen von Eitzen_, Jun 18 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 02:41 EST 2021. Contains 349590 sequences. (Running on oeis4.)