login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098352
Multiplication table of the even numbers read by antidiagonals.
2
4, 8, 8, 12, 16, 12, 16, 24, 24, 16, 20, 32, 36, 32, 20, 24, 40, 48, 48, 40, 24, 28, 48, 60, 64, 60, 48, 28, 32, 56, 72, 80, 80, 72, 56, 32, 36, 64, 84, 96, 100, 96, 84, 64, 36, 40, 72, 96, 112, 120, 120, 112, 96, 72, 40, 44, 80, 108, 128, 140, 144, 140, 128, 108, 80, 44
OFFSET
1,1
FORMULA
T(n,k) = 4*A003991(n,k). - R. J. Mathar, Dec 08 2015
EXAMPLE
4 8 12 16 20 24 28 32
8 16 24 32 40 48 56 64
12 24 36 48 60 72 84 96
16 32 48 64 80 96 112 128
20 40 60 80 100 120 140 160
24 48 72 96 120 144 168 192
28 56 84 112 140 168 196 224
32 64 96 128 160 192 224 256
MAPLE
seq(seq(4*k*(n-k+1), k = 1..n), n = 1..12); # G. C. Greubel, Aug 16 2019
MATHEMATICA
Table[4*k*(n-k+1), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 16 2019 *)
PROG
(PARI) T(n, k) = 4*k*(n-k+1); \\ G. C. Greubel, Aug 16 2019
(Magma) [4*k*(n-k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 16 2019
(Sage) [[4*k*(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Aug 16 2019
(GAP) Flat(List([1..12], n-> List([1..n], k-> 4*k*(n-k+1) ))); # G. C. Greubel, Aug 16 2019
CROSSREFS
Sequence in context: A145154 A072541 A141719 * A273395 A273456 A299771
KEYWORD
nonn,tabl,easy
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
STATUS
approved