login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072541
List of pairs of numbers (k, k+4), where k-1 and k+3 are primes.
1
4, 8, 8, 12, 14, 18, 20, 24, 38, 42, 44, 48, 68, 72, 80, 84, 98, 102, 104, 108, 110, 114, 128, 132, 164, 168, 194, 198, 224, 228, 230, 234, 278, 282, 308, 312, 314, 318, 350, 354, 380, 384, 398, 402, 440, 444, 458, 462, 464, 468, 488, 492, 500, 504, 614, 618
OFFSET
1,1
COMMENTS
The puzzle started with a(3): 8, 12, 14, 18, 20, 24, ?.
REFERENCES
Frankfurter Allgemeine Sonntagszeitung, Jul 28, 2002, "Koennen Sie folgen?", p. 56.
LINKS
FORMULA
a(2*n-1) = A023200(n)+1, a(2*n) = A023200(n)+5, n>0.
MATHEMATICA
Flatten[{#, #+4}&/@Select[Range[700], AllTrue[#+{-1, 3}, PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 22 2014 *)
PROG
(Haskell)
import Data.List (transpose)
a072541 n = a072541_list !! (n-1)
a072541_list = concat $ transpose
[map (+ 1) a023200_list, map (+ 5) a023200_list]
-- Reinhard Zumkeller, Aug 01 2014
CROSSREFS
Cf. A023200.
Sequence in context: A272812 A273207 A145154 * A141719 A098352 A273395
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 04 2002
STATUS
approved