Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:15
%S 4,8,8,12,16,12,16,24,24,16,20,32,36,32,20,24,40,48,48,40,24,28,48,60,
%T 64,60,48,28,32,56,72,80,80,72,56,32,36,64,84,96,100,96,84,64,36,40,
%U 72,96,112,120,120,112,96,72,40,44,80,108,128,140,144,140,128,108,80,44
%N Multiplication table of the even numbers read by antidiagonals.
%H G. C. Greubel, <a href="/A098352/b098352.txt">Antidiagonals n = 1..100, flattened</a>
%F T(n,k) = 4*A003991(n,k). - _R. J. Mathar_, Dec 08 2015
%e 4 8 12 16 20 24 28 32
%e 8 16 24 32 40 48 56 64
%e 12 24 36 48 60 72 84 96
%e 16 32 48 64 80 96 112 128
%e 20 40 60 80 100 120 140 160
%e 24 48 72 96 120 144 168 192
%e 28 56 84 112 140 168 196 224
%e 32 64 96 128 160 192 224 256
%p seq(seq(4*k*(n-k+1), k = 1..n), n = 1..12); # _G. C. Greubel_, Aug 16 2019
%t Table[4*k*(n-k+1), {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Aug 16 2019 *)
%o (PARI) T(n,k) = 4*k*(n-k+1); \\ _G. C. Greubel_, Aug 16 2019
%o (Magma) [4*k*(n-k+1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Aug 16 2019
%o (Sage) [[4*k*(n-k+1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Aug 16 2019
%o (GAP) Flat(List([1..12], n-> List([1..n], k-> 4*k*(n-k+1) ))); # _G. C. Greubel_, Aug 16 2019
%Y Cf. A003991, A098353.
%K nonn,tabl,easy
%O 1,1
%A Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004