OFFSET
0,2
COMMENTS
(17*b(n))^2 - 293*a(n)^2 = -4 with b(n)=A098249(n) give all positive solutions of this Pell equation.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..405
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
Index entries for linear recurrences with constant coefficients, signature (291,-1).
FORMULA
a(n) = ((-1)^n)*S(2*n, 17*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-291*x+x^2).
a(n) = S(n, 291) - S(n-1, 291) = T(2*n+1, sqrt(293)/2)/(sqrt(293)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.
a(n) = 291*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=290. - Philippe Deléham, Nov 18 2008
EXAMPLE
All positive solutions of Pell equation x^2 - 293*y^2 = -4 are (17=17*1,1), (4964=17*292,290), (1444507=17*84971,84389), (420346573=17*24726269,24556909), ...
MATHEMATICA
LinearRecurrence[{291, -1}, {1, 290}, 20] (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-291*x+x^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) I:=[1, 290]; [n le 2 select I[n] else 291*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
(Sage) ((1-x)/(1-291*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[1, 290];; for n in [3..20] do a[n]:=291*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved