The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098247 First differences of Chebyshev polynomials S(n,227)=A098245(n) with Diophantine property. 5
 1, 226, 51301, 11645101, 2643386626, 600037119001, 136205782626601, 30918112619119426, 7018275358757483101, 1593117588325329544501, 361630674274491049118626, 82088569942721142820383601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS (15*b(n))^2 - 229*a(n)^2 = -4 with b(n)=A098246(n) give all positive solutions of this Pell equation. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..423 Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Index entries for linear recurrences with constant coefficients, signature (227,-1). Index entries for sequences related to Chebyshev polynomials. FORMULA a(n) = S(n, 227) - S(n-1, 227) = T(2*n+1, sqrt(229)/2)/(sqrt(229)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the second kind, A053120. a(n) = ((-1)^n)*S(2*n, 15*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials. G.f.: (1-x)/(1-227*x+x^2). a(n) = 227*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=226. - Philippe Deléham, Nov 18 2008 EXAMPLE All positive solutions of Pell equation x^2 - 229*y^2 = -4 are (15=15*1,1), (3420=15*228,226), (776325=15*51755,51301), (176222355=15*11748157,11645101), ... MATHEMATICA LinearRecurrence[{227, -1}, {1, 226}, 20] (* G. C. Greubel, Aug 01 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1-x)/(1-227*x+x^2)) \\ G. C. Greubel, Aug 01 2019 (Magma) I:=[1, 226]; [n le 2 select I[n] else 227*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019 (Sage) ((1-x)/(1-227*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019 (GAP) a:=[1, 226];; for n in [3..20] do a[n]:=227*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019 CROSSREFS Sequence in context: A251507 A251500 A050847 * A092994 A031513 A078765 Adjacent sequences: A098244 A098245 A098246 * A098248 A098249 A098250 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 21:37 EDT 2024. Contains 375795 sequences. (Running on oeis4.)