login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097742 Pell equation solutions (10*b(n))^2 - 101*a(n)^2 = -1 with b(n):=A097741(n), n>=0. 5
1, 401, 161201, 64802401, 26050404001, 10472197606001, 4209797387208401, 1692328077460171201, 680311677341601614401, 273483601963246388818001, 109939727677547706703222001, 44195497042772214848306426401 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..383

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (402, -1).

FORMULA

a(n)= S(n, 2*201) - S(n-1, 2*201) = T(2*n+1, sqrt(101))/sqrt(101), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.

a(n)= ((-1)^n)*S(2*n, 20*I) with the imaginary unit I and Chebyshev polynomials S(n, x) with coefficients shown in A049310.

G.f.: (1-x)/(1-402*x+x^2).

a(n)=402*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=401 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

(x,y) = (10*1=10;1), (4030=10*403;401), (1620050=10*162005;161201), ... give the positive integer solutions to x^2 - 101*y^2 =-1.

MATHEMATICA

LinearRecurrence[{402, -1}, {1, 401}, 12] (* Ray Chandler, Aug 12 2015 *)

CROSSREFS

Cf. A097740 for S(n, 402).

Row 10 of array A188647.

Sequence in context: A156785 A031628 A179293 * A115244 A031518 A104391

Adjacent sequences:  A097739 A097740 A097741 * A097743 A097744 A097745

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 22 22:05 EDT 2017. Contains 283901 sequences.