login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097632
a(n) = 2^n * Lucas(n) * (n-1)!.
1
2, 12, 64, 672, 8448, 138240, 2672640, 60641280, 1568931840, 45705461760, 1478924697600, 52646746521600, 2044394156851200, 86005817907609600, 3896481847600742400, 189139342470414336000, 9793081532749971456000, 538748376721309827072000, 31381673358053118836736000
OFFSET
1,1
COMMENTS
Number of possible well-colored cycles on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.
LINKS
C. Banderier, J.-M. Le Bars, and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004.
FORMULA
E.g.f.: -log(1-2*x-4*x^2).
a(n) = A000204(n) * A066318(n).
a(n) ~ sqrt(2*Pi/n)*(2*n*phi/e)^n. - Stefano Spezia, Jan 16 2024
MATHEMATICA
a[n_] := 2^n*LucasL[n, 1]*(n-1)!; Array[a, 19] (* or *)
nmax=19; CoefficientList[Series[-Log[1-2x-4x^2], {x, 0, nmax}], x]Range[0, nmax]! (* Stefano Spezia, Jan 15 2024 *)
PROG
(Python)
def A097632(n):
L0, L1, F, i = 1, 2, 2, 1
while i < n:
L0, L1, F, i = L0+L1, L0, 2*i*F, i+1
return L0*F # A.H.M. Smeets, Jan 15 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Aug 17 2004
EXTENSIONS
Definition corrected by and a(18)-a(19) from Stefano Spezia, Jan 15 2024
STATUS
approved