login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097630
Number of unrooted directed trees on n nodes with a red root.
3
1, 1, 7, 70, 1093, 22426, 578779, 17976302, 653866441, 27270138898, 1283303262151, 67277393090854, 3888789288662029, 245724292311198650, 16851817924083466003, 1246663922538961356766, 98960637955717312632721
OFFSET
1,3
LINKS
C. Banderier, J.-M. Le Bars and V. Ravelomanana, Generating functions for kernels of digraphs
FORMULA
E.g.f.: A(x) = 2B - 2BC + C - 2B/C + C^2/2, with B = egf of A052746 and C = egf of A097627.
a(n) = (n-1)!*[x^n](LambertW(-LambertW(-2x)/2)). - Jean-François Alcover, Dec 13 2018
a(n) ~ 2^n * n^(n-2) / (1 + 1/LambertW(1/2)). - Vaclav Kotesovec, Feb 24 2019
MATHEMATICA
terms = 17;
Rest[CoefficientList[LambertW[-LambertW[-2x]/2] + O[x]^(terms+1), x]]* Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
PROG
(PARI) seq(n)={Vec(serlaplace(lambertw(-lambertw(-2*x + O(x*x^n))/2)/x))} \\ Andrew Howroyd, Dec 13 2018
CROSSREFS
Cf. A097629.
Sequence in context: A346668 A362775 A365031 * A090647 A200929 A111462
KEYWORD
nonn
AUTHOR
Ralf Stephan, Aug 17 2004
STATUS
approved