login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097604
a(n) = floor( phi(n)*sqrt(2*n) ) - n.
2
0, 0, 1, 1, 7, 0, 15, 8, 16, 7, 35, 7, 48, 17, 28, 29, 76, 18, 91, 30, 56, 44, 126, 31, 116, 60, 105, 61, 184, 31, 205, 96, 129, 97, 165, 65, 272, 118, 172, 103, 321, 67, 346, 143, 182, 165, 398, 108, 366, 150, 272, 192, 482, 133, 364, 197, 327, 243, 571, 115, 601, 272, 341
OFFSET
1,5
COMMENTS
This is known to be always >= 0, i.e. that n/phi(n) <= sqrt(2n) holds for all n. This is a consequence of the stronger inequality in A079530.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 9.
LINKS
MATHEMATICA
Table[Floor[Sqrt[2*n]*EulerPhi[n]] - n, {n, 1, 100}] (* G. C. Greubel, Jan 14 2019 *)
PROG
(PARI) vector(100, n, (sqrt(2*n)*eulerphi(n))\1 -n) \\ G. C. Greubel, Jan 14 2019
(Magma) [Floor(Sqrt(2*n)*EulerPhi(n)) - n: n in [1..100]]; // G. C. Greubel, Jan 14 2019
(Sage) [floor(sqrt(2*n)*euler_phi(n)) - n for n in (1..100)] # G. C. Greubel, Jan 14 2019
CROSSREFS
Sequence in context: A331423 A240825 A243773 * A240816 A007393 A348516
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, based on emails from Alonso del Arte and Jud McCranie, Aug 30 2004
STATUS
approved