login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097602
a(n+1) = a(n) + number of squares so far; a(1) = 1.
6
1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 25, 29, 33, 37, 41, 45, 49, 54, 59, 64, 70, 76, 82, 88, 94, 100, 107, 114, 121, 129, 137, 145, 153, 161, 169, 178, 187, 196, 206, 216, 226, 236, 246, 256, 267, 278, 289, 301, 313, 325, 337, 349, 361, 374, 387, 400, 414, 428
OFFSET
1,2
COMMENTS
Conjecture: a(n) = m^2 iff m mod 3 > 0.
a(n) is a square iff n is congruent to {1, 4} mod 9. - Vladeta Jovovic, Aug 30 2004
LINKS
FORMULA
a(9*n+1) = (3*n+1)^2; a(9*n+4) = (3*n+2)^2. - Vladeta Jovovic, Aug 30 2004
G.f.: x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3). - Vladeta Jovovic, Aug 30 2004
a(n+1) = a(n) + Sum_{k=1..n} A010052(a(k)). - Reinhard Zumkeller, Nov 15 2011
EXAMPLE
a(2) = a(1) + #{1} = 1 + 1 = 2;
a(3) = a(2) + #{1} = 2 + 1 = 3;
a(4) = a(3) + #{1} = 3 + 1 = 4;
a(5) = a(4) + #{1,4} = 4 + 2 = 6;
a(6) = a(5) + #{1,4} = 6 + 2 = 8;
a(7) = a(6) + #{1,4} = 8 + 2 = 10;
a(8) = a(7) + #{1,4} = 10 + 2 = 12;
a(9) = a(8) + #{1,4} = 12 + 2 = 14;
a(10) = a(9) + #{1,4} = 14 + 2 = 16;
a(11) = a(10) + #{1,4,16} = 16 + 3 = 19;
a(12) = a(11) + #{1,4,16} = 19 + 3 = 22.
MATHEMATICA
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19}, 70] (* G. C. Greubel, Jan 14 2019 *)
PROG
(Haskell)
a097602 n = a097602_list !! (n-1)
a097602_list = 1 : f 1 1 where
f x c = y : f y (c + a010052 y) where y = x + c
-- Reinhard Zumkeller, Nov 15 2011
(PARI) my(x='x+O('x^70)); Vec(x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3)) \\ G. C. Greubel, Jan 14 2019
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3) )); // G. C. Greubel, Jan 14 2019
(Sage) a=(x*(1+x^4-x^9+x^10)/((1+x+x^2)*(1+x^3+x^6)*(1-x)^3)).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jan 14 2019
(GAP) a:=[1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19];; for n in [12..70] do a[n]:= 2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Jan 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 30 2004
STATUS
approved