login
A097463
Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents.
0
0, 1, 2, 11, 101, 21, 4, 12, 10001, 2001, 111, 22, 301, 1101, 100000001, 200001, 1000000001, 211, 11001, 1011, 32, 110001, 1000000000001, 30001, 51, 202, 1100001, 1000000000000001, 23, 4001, 1201, 101001, 3000001, 110000001, 200000000001
OFFSET
1,3
COMMENTS
If P(n)-1 = P(1)^a * P(2)^b *....* P(j)^k then a(n) = ab...k.
EXAMPLE
3-1=2^1, so a(2)=1.
5-1=2^2, so a(3)=2.
7-1=2^1*3^1, so a(4)=11.
23=(2^1)*(11^1)+1. So a(9) = 10001.
37 = 36 + 1 = 2^2*3^2 + 1, so 37 becomes 22 (a=2,b=2).
PROG
(PARI) {forprime(p=2, 150, f=factor(p-1); j=1; q=2; s="0"; while(j<=matsize(f)[1], if(q==f[j, 1], s=concat(s, f[j, 2]); j++, s=concat(s, 0)); q=nextprime(q+1)); print1(eval(s), ", "))} \\ Klaus Brockhaus, Apr 25 2005
CROSSREFS
Cf. A037916.
Sequence in context: A038371 A236174 A003021 * A263607 A083394 A263611
KEYWORD
nonn,base
AUTHOR
Pierre CAMI, Aug 23 2004
EXTENSIONS
More terms from Klaus Brockhaus, Apr 25 2005
a(9) corrected by Dennis (tuesdayist(AT)juno.com), Mar 30 2006
STATUS
approved