login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097463
Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents.
0
0, 1, 2, 11, 101, 21, 4, 12, 10001, 2001, 111, 22, 301, 1101, 100000001, 200001, 1000000001, 211, 11001, 1011, 32, 110001, 1000000000001, 30001, 51, 202, 1100001, 1000000000000001, 23, 4001, 1201, 101001, 3000001, 110000001, 200000000001
OFFSET
1,3
COMMENTS
If P(n)-1 = P(1)^a * P(2)^b *....* P(j)^k then a(n) = ab...k.
EXAMPLE
3-1=2^1, so a(2)=1.
5-1=2^2, so a(3)=2.
7-1=2^1*3^1, so a(4)=11.
23=(2^1)*(11^1)+1. So a(9) = 10001.
37 = 36 + 1 = 2^2*3^2 + 1, so 37 becomes 22 (a=2,b=2).
PROG
(PARI) {forprime(p=2, 150, f=factor(p-1); j=1; q=2; s="0"; while(j<=matsize(f)[1], if(q==f[j, 1], s=concat(s, f[j, 2]); j++, s=concat(s, 0)); q=nextprime(q+1)); print1(eval(s), ", "))} \\ Klaus Brockhaus, Apr 25 2005
CROSSREFS
Cf. A037916.
Sequence in context: A038371 A236174 A003021 * A263607 A083394 A263611
KEYWORD
nonn,base
AUTHOR
Pierre CAMI, Aug 23 2004
EXTENSIONS
More terms from Klaus Brockhaus, Apr 25 2005
a(9) corrected by Dennis (tuesdayist(AT)juno.com), Mar 30 2006
STATUS
approved